Tricyclic graph with maximal Estrada index

Zhongxun Zhua,*, Liansheng Tanb, Zhongyi Qiuc

a Department of Mathematics and Statistics, South Central University for Nationalities, Wuhan 430074, PR China
b Computer Science Department, Central China Normal University, Wuhan 430079, PR China
c Hubei Polytechnic Institute, Xiaogan 432000, PR China

Abstract

Let G be a simple connected graph on n vertices and $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of the adjacency matrix of G. The Estrada index of G is defined as $EE(G) = \sum_{i=1}^{n} e^{\lambda_i}$. Let T_n be the class of tricyclic graphs G on n vertices. In this paper, the graphs in T_n with the maximal Estrada index is characterized.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let $G = (V, E)$ be a simple connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and edge set $E(G) = \{e_1, e_2, \ldots, e_m\}$. If $m = n - 1 + c$, then G is called a c-cyclic graph. If $c = 0$, 1, 2 and 3, then G is a tree, unicyclic graph, bicyclic graph and tricyclic graph, respectively. Denote by T_n the class of tricyclic graph G on n vertices.

Let $A(G)$ be the $(0, 1)$-adjacency matrix of G. The characteristic polynomial $\phi(G; x)$ of G is $|xI - A(G)|$, where I is the unit matrix. We call the eigenvalues $\lambda_1(G) \geq \lambda_2(G) \geq \cdots \geq \lambda_n(G)$ (for short $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$) of $A(G)$ the spectrum of G. A graph-spectrum-based molecular structure descriptor, named Estrada index, put forward by Estrada [6], is defined as

$$EE(G) = \sum_{i=1}^{n} e^{\lambda_i}.$$

Since then, the Estrada index has found multiple applications in a large variety of problems, for example, it has been successfully employed to quantify the degree of folding of long-chain molecules, especially proteins [7–9], and to measure the centrality of complex (reaction, metabolic, communication, social, etc.) networks [10,11]. There is also a connection between the Estrada index and the extended atomic branching of molecules [12]. Besides these applications, the Estrada index has also been extensively studied in mathematics (see [13,14,17–19]). Among these, Ilić and Stevanović [13] obtained the unique tree with minimum Estrada index among the set of trees with given maximum degree. Zhang et al. [17] determined the unique tree with maximum Estrada indices among the set of trees with given matching number. In [4], Z. Du and B. Zhou characterized the unique unicyclic graph with maximum Estrada index, and L. Wang et al. [16] determine the unique graph with maximum Estrada index among bicyclic graphs with fixed order. In this paper, we further consider the Estrada index of tricyclic graphs in T_n.

In order to state our results, we introduce some notation and terminology. For other undefined notation we refer to Bollobás [1]. Let P_n, C_n and S_n be the path, the cycle and the star on n vertices, respectively. Let $N_C(u) = \{v | uv \in E(G)\}$,

* Corresponding author. Tel.: +86 15072323169.
E-mail address: zzxun73@mail.scuec.edu.cn (Z. Zhu).

0166-218X/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.08.045
$N_C(v) = N_G(v) \cup \{v\}$. Denote by $d_C(v) = |N_C(v)|$ the degree of the vertex v of G. If $E_G \subseteq E(G)$, we denote by $G - E_0$ the subgraph of G obtained by deleting the edges in E_0. If E_1 is the subset of the edge set of the complement of G, $G + E_1$ denotes the graph obtained from G by adding the edges in E_1. Similarly, if $W \subseteq V(G)$, we denote by $G - W$ the subgraph of G obtained by deleting the vertices of W and the edges incident with them. If $E = \{xy\}$ and $W = \{v\}$, we write $G - xy$ and $G - v$ instead of $G - \{xy\}$ and $G - \{v\}$, respectively.

2. Preliminaries

Let $M_k(G)$ be the kth spectral moment of the graph G, i.e., $M_k(G) = \sum_{i=1}^{n}\lambda_i^k$. We know from [2] that $M_k(G)$ is equal to the number of closed walks of length k in G. It is well known that the first few spectral moments satisfy the following relations:

$$M_0(G) = n, \quad M_1(G) = 0, \quad M_2(G) = 2m, \quad M_3(G) = 6t, \quad M_4(G) = 2\sum_{i=1}^{n}d_i^2 - 2m + 8q,$$

where t is the number of triangles, q the number of quadrangles and $d_i = d_C(v)$ the degree of v_i in G, respectively. From the Taylor expansion of e^x, it is easy to see that the Estrada index and the spectral moments of G are related by

$$EE(G) = \sum_{k=0}^{\infty} \frac{M_k(G)}{k!}.$$

Thus, if for two graphs G_1 and G_2 we have $M_k(G_1) \geq M_k(G_2)$ for all $k \geq 0$, then $EE(G_1) \geq EE(G_2)$. Moreover, if there is at least one positive integer k_0 such that $M_{k_0}(G_1) > M_{k_0}(G_2)$, then $EE(G_1) > EE(G_2)$.

For any vertices u, v and w (not necessarily distinct) in G, we denote by $M_k(G; u, v)$ the number of walks in G with length k from u to v, and by $W_k(G; u, v)$ the number of walks in G with length k from u to v which go through w. Denote by $W_k(G; u, v)$ a walk of length k from u to v in G, and by $W_k(G; u, v)$ the set of all such walks. Clearly $M_k(G; u, v) = |W_k(G; u, v)|$. Note that

$$M_k(G; u, v) = M_k(G; v, u)$$

for any positive integer k [2].

Let G and H be two graphs with $u_1, v_1 \in V(G)$ and $u_2, v_2 \in V(H)$. If $M_k(G; u_1, v_1) \leq M_k(H; u_2, v_2)$ for all positive integers k, then we write $(G; u_1, v_1) \preceq (H; u_2, v_2)$. If $(G; u_1, v_1) \preceq (H; u_2, v_2)$ and there is at least one positive integer k_0 such that $M_{k_0}(G; u_1, v_1) < M_{k_0}(H; u_2, v_2)$, then we write $(G; u_1, v_1) \prec (H; u_2, v_2)$.

The following lemmas will be used in this paper.

Lemma 2.1 ([2]). Let v be a vertex of a graph G, and $C(v)$ be the set of all cycles containing v. Then the characteristic polynomial of G satisfies

$$\phi(G; x) = x\phi(G - v; x) - \sum_{u \in E(G)} \phi(G - u - v; x) - 2 \sum_{Z \in C(v)} \phi(G \setminus V(Z); x),$$

where $\phi(G - u - v; x) = 1$ if G is a single edge, and $\phi(G \setminus V(Z); x) = 1$ if G is a cycle.

Lemma 2.2 ([3]). Let H be a graph (not necessarily connected) with $u, v \in V(H)$. Suppose that $w_i \in V(H)$, and $uw_i, vw_i \notin E(H)$ for $i = 1, 2, \ldots, r$, where r is a positive integer. Let $E_u = \{uw_1, uw_2, \ldots, uw_r\}$ and $E_v = \{vw_1, vw_2, \ldots, vw_r\}$. Let $H_u = H + E_u$ and $H_v = H + E_v$. If $(H; u) \prec (H; v)$ and $(H; w_i, u) \preceq (H; w_i, v)$ for $1 \leq i \leq r$, then $EE(H_u) < EE(H_v)$.

Lemma 2.3 ([5]). Let G_1 and G_2 be connected graphs with $u \in V(G_1)$ and $v \in V(G_2)$. Let G be the graph obtained by joining u with v by an edge, and let G' be the graph obtained by identifying u with v, and attaching a pendant vertex to the common vertex. If $d_G(u), d_G(v) \geq 2$, then $EE(G) < EE(G')$.

The coalescence of two vertex-disjoint connected graphs G, H, denoted by $G(u) \circ H(w)$, where $u \in V(G)$ and $w \in V(H)$, is obtained by identifying the vertex u of G with the vertex w of H. A graph is called nontrivial if it contains at least two vertices.

Lemma 2.4 ([16]). Let H_1 be a connected graph containing two vertices u, v, and let H_2 be a connected graph disjoint to H_1, which contains a vertex w. Let H'_2 be a copy of H_2, containing the vertex w' corresponding to w of H_2. Let $G = (H_1(u) \circ H_2(w))(v) \circ H'_2(w')$.

(i) If there exists an automorphism σ of H_1 such that it interchanges u and v, then $(G; u, t) = (G; v, \sigma(t))$ for any vertex t.

(ii) If letting H_1 be obtained from H_1 by adding some edges incident with v but not u, letting H_2 be obtained from H'_2 by adding some vertices or edges such that the resulting graph is connected, and letting G be obtained from G by replacing H_1 with H_1 or H'_2 with H_2, then $(G; u, t) < (G; v, \sigma(t))$.

3. Tricyclic graphs with maximal Estrada index

For a graph $G \in \mathcal{G}_n$, the base of G, denoted by $B(G)$, is the minimal tricyclic subgraph of G. Obviously, $B(G)$ is the unique tricyclic subgraph of G containing no pendant vertex, and G can be obtained from $B(G)$ by planting trees to some vertices of
B(G). By [15], we know that tricyclic graphs have the following four types of bases (as shown in Figs. 1–4): G^3_j $(j = 1, \ldots, 7)$, G^4_j $(j = 1, \ldots, 4)$, G^6_j $(j = 1, \ldots, 3)$ and G^7_1. Let

$$\mathcal{T}^3_n = \{G|B(G) \cong G^3_j, j \in \{1, \ldots, 7\}\}; \quad \mathcal{T}^4_n = \{G|B(G) \cong G^4_j, j \in \{1, \ldots, 4\}\};$$

$$\mathcal{T}^6_n = \{G|B(G) \cong G^6_j, j \in \{1, \ldots, 3\}\}; \quad \mathcal{T}^7_n = \{G|B(G) \cong G^7_1\}.$$

Then $\mathcal{T}_n = \mathcal{T}^3_n \cup \mathcal{T}^4_n \cup \mathcal{T}^6_n \cup \mathcal{T}^7_n$.

Repeatedly by Lemma 2.3, we have the following lemmas.

Lemma 3.1. If G^* be a extremal graph with maximal Estrada index in \mathcal{T}_n, then G^* is obtained from its base by attaching some pendent vertices.

Lemma 3.2. (i) If G^* be a extremal graph with maximal Estrada index in \mathcal{T}^3_n, then $B(G^*) \cong G^3_j, j \in \{1, 2\}$.

(ii) If G^* be a extremal graph with maximal Estrada index in \mathcal{T}^4_n, then $B(G^*) \cong G^4_j, j \in \{1, 2\}$.
Lemma 3.3. If G_1 be a extremal graph with maximal Estrada index in \mathcal{F}^4_n, then there exists a graph G_2 in \mathcal{F}^4_n such that $EE(G_2) > EE(G_1)$.

Proof. By Lemma 3.2(i), we know that $B(G_1) \cong G^3_1$, $j \in \{1, 2\}$. If $B(G_1) \cong G^1_1$, let $uv, vt, uw, ws \in E(G_1)$ (as shown in Fig. 1). Without loss of generality, let $d_{G_1}(w) \geq d_{G_1}(v).$

Let H_1 be the graph obtained from G_1 by deleting ws, vt, $d_{G_1}(w) - 2$ pendent edges attached at w and $d_{G_1}(v) - 2$ pendent edges attached at v. Then there exists an automorphism σ of H_1 which interchange v and w, and preserves all other vertices.

Let $H_2 \cong K_1d_{G_1}(v) - 2$ with center v' and $G_0 = (H_1(v) \circ H_2(v'))(w) \circ H_2(v')$. By Lemma 2.4(i), we have $(G_0; v, x) = (G_0; x, v, (x))$ for any vertex $x \in V(G_0).$ Further, let G_3 be the graph obtained from G_0 by adding edge uw, wu, $w_1w_2 \in E(G_1)$ (as shown in Fig. 2). Note that $C_4 \cap C_6 = P$ in G_4. Without loss of generality, let $d_{G_1}(w_1) \geq d_{G_1}(v_1).

Case 1. If $r \neq 1$, let H_1 be the graph obtained from G_1 by deleting $w_1w_2, v_1v_2, d_{G_1}(w_1) - 2$ pendent edges attached at w_1 and $d_{G_1}(v_1) - 2$ pendent edges attached at v_1. Then there exists an automorphism σ of H_1 which interchange v_1 and w_1, and preserves all other vertices.

Let $H_2 \cong K_1d_{G_1}(v_1) - 2$ with center v' and $G_0 = (H_1(v_1) \circ H_2(v'))(w_1) \circ H_2(v').$ By Lemma 2.4(i), we have $(G_0; v_1, x) = (G_0; v_1, x, (x))$ for any vertex $x \in V(G_0).$ Further, let G_3 be the graph obtained from G_0 by adding edge w_1u_1, w_1u_2 and $d_{G_1}(w_1) - d_{G_1}(v_1)$ pendent edges attached at w_1. Then by Lemma 2.4(ii), we have $(G_0; v_1, x) = (G_0; v_1, x, (x))$ for any vertex $x \in V(G_0).$

Case 2. If $r = 1$ and $d_{G_1}(w_1) \geq d_{G_1}(v_1)+1$, let H_1 be the graph obtained from G_1 by deleting w_1v_1 and the edges w_1u_1, w_1u_2 on C_4 which is adjacent to $w_1, d_{G_1}(w_1) - 3$ pendent edges attached at w_1 and $d_{G_1}(v_1) - 2$ pendent edges attached at v_1. Then there exists an automorphism σ of H_1 which interchange v_1 and w_1, and preserves all other vertices.

Let $H_2 \cong K_1d_{G_1}(v_1) - 3$ with center v' and $G_0 = (H_1(v_1) \circ H_2(v'))(w_1) \circ H_2(v').$ By Lemma 2.4(i), we have $(G_0; w_1, x) = (G_0; w_1, x, (x))$ for any vertex $x \in V(G_0).$ Further, let G_3 be the graph obtained from G_0 by adding edge w_1u_1, w_1u_2 and $d_{G_1}(w_1) - d_{G_1}(v_1)$ pendent edges attached at w_1. Then by Lemma 2.4(ii), we have $(G_0; v_1, x) = (G_0; v_1, x, (x))$ for any vertex $x \in V(G_0).$

Case 3. If $r = 1$ and $d_{G_1}(w_1) = d_{G_1}(v_1)$, let H_1 be the graph obtained from G_1 by deleting the edges w_1u_1, w_1u_2 on C_4 which is adjacent to w_1 and $v_1v_2, d_{G_1}(w_1) - 3$ pendent edges attached at w_1 and $d_{G_1}(v_1) - 2$ pendent edges attached at v_1. Then there exists an automorphism σ of H_1 which interchange v_1 and w_1, and preserves all other vertices.

Let $H_2 \cong K_1d_{G_1}(v_1) - 3$ with center v' and $G_0 = (H_1(v_1) \circ H_2(v'))(w_1) \circ H_2(v').$ By Lemma 2.4(i), we have $(G_0; w_1, x) = (G_0; w_1, x, (x))$ for any vertex $x \in V(G_0).$ Further, let G_3 be the graph obtained from G_0 by adding edge w_1u_1, w_1u_2 and $d_{G_1}(w_1) - d_{G_1}(v_1)$ pendent edges attached at w_1. Then by Lemma 2.4(ii), we have $(G_0; v_1, x) = (G_0; v_1, x, (x))$ for any vertex $x \in V(G_0).$

By an argument similar to that in the proof of $B(G_1) \cong G^3_1$, we can also show that $B(G_1) \cong G^3_3$. This completes the proof of Lemma 3.3. □

Lemma 3.4. If G_1 be a extremal graph with maximal Estrada index in \mathcal{F}^4_n, then there exists a graph G_2 in \mathcal{F}^4_n such that $EE(G_2) > EE(G_1)$.

Proof. By Lemma 3.2(ii), we know that $B(G_1) \cong G^3_1$, $j \in \{1, 2\}$. If $B(G_1) \cong G^1_1$, let $uv, v_1v_2, uv_1, w_1w_2 \in E(G_1)$ (as shown in Fig. 2). Then by Lemma 2.4(ii), we have $(G_0; v, x) = (G_0; v, x, (x))$ for any vertex $x \in V(G_0).$ Obviously, $G_1 = G_3 + v_1v_2$. Let $G_2 = G_3 + v_1v_2$, obviously, $G_2 \in \mathcal{F}^6_n$. By Lemma 2.2, we have $EE(G_2) > EE(G_1)$.

Case 2. If $r = 1$ and $d_{G_1}(w_1) \geq d_{G_1}(v_1)+1$, let H_1 be the graph obtained from G_1 by deleting w_1u_1, w_1u_2 and $d_{G_1}(w_1) - 3$ pendent edges attached at w_1. Then there exists an automorphism σ of H_1 which interchange v_1 and w_1, and preserves all other vertices.

By an argument similar to that in the proof of $B(G_1) \cong G^3_1$, we can also show that $B(G_1) \cong G^3_3$. This completes the proof of Lemma 3.4. □

By Lemmas 3.1–3.4, we have the following corollary.

Corollary 3.5. Let G^* be a graph with maximal Estrada index in \mathcal{F}_n, then $B(G^*) \cong G^6_j (j \in \{1, 2, 3\})$ or $B(G^*) \cong G^7_1$.

The internal path of G is a walk $v_0v_1 \ldots v_s$ such that the vertices v_0, v_1, \ldots, v_s are distinct, $d_G(v_0) > 2, d_G(v_s) > 2$, and $d_G(v_i) = 2$, whenever $0 < i < s$.

Lemma 3.6. Let $G \in \mathcal{F}^6_n \cup \mathcal{F}^7_n$, $P^k_i (1 \leq i \leq d_{B(G)}(u))$ be the internal path in $B(G)$ with one end vertex u, where $d_{B(G)}(u) \geq 3$ ($u \in B(G)$), if there exist two paths $P^k_i, P^l_j (1 \leq k \leq d_{B(G)}(u))$ with $|P^k_i| \geq 1, |P^l_j| \geq 1$, then there exists a graph $\tilde{G} \in \mathcal{F}^6_n \cup \mathcal{F}^7_n$ such that $|E(B(G))| - |E(B(\tilde{G}))| = 1$ and $EE(\tilde{G}) > EE(G)$.

Proof. Let $P^k_i = uw_1 \ldots u_i, P^l_j = uw_1 \ldots u_j, \eta \geq 1, j \geq 1, t \geq 3$.

Case 1. If $s \geq 2, t \geq 3$, without loss of generality, let $d_G(w_1) \geq d_G(v_1)$.

Let H_1 be the graph obtained from G by deleting the edges w_1w_2 and $w_1v_1, d_G(v_1) - 2$ pendent edges attached at v_1 and $d_G(w_1) - 2$ pendent edges attached at w_1. Then there exists an automorphism σ of H_1 which interchange v_1 and w_1, and preserves all other vertices.
Let $H_2 \cong K_{1, \delta c(v)} - 2$ with center v' and $G_0 = (H_1(v) \circ H_2(v'))(w_1) \circ H_2(v')$. By Lemma 2.4(i), we have $(G_0; w_1, v) = (G_0; v, \sigma(v))$ for any vertex $v \in V(G_0)$. Further, let G_1 be the graph obtained from G_0 by adding edge w_1w_2 and $d_c(w_1) - d_c(v)$ pendant edges attached at w_1. Then by Lemma 2.4(ii), we have $(G_1; w_1, v) \not\cong (G_1; v, \sigma(v))$ for any vertex $v \in V(G_1)$. Obviously, $G = G_1 + v_1v_2$. Let $\tilde{G} = G_1 + w_1v_2$, obviously, $\tilde{G} \in \mathcal{F}_6^{2x} \cup \mathcal{F}_7^{2x}$ and $|E(B(G))| - |E(B(\tilde{G}))| = 1$. By Lemma 2.2, we have $EE(\tilde{G}) > EE(G)$.

Case 2. If $s = 1$, $t \geq 3$, by $d_{B(G)}(u) \geq 3$, let $P_u = u x_1 \ldots x_t$ be the third path with one end vertex u, $|P_u| \geq 1$.

Case 2.1. If $|P_u| \geq 2$, then the two paths P_u, P_u' coincide with the conditions of Case 1, we can obtain a graph with larger Estrada index.

Case 2.2. If $|P_u| = 1$, then $d_{B(G)}(x_1) \geq 3$ and $x_1 \not\in V(P_u)$. Let x_1, x_2 be two vertex adjacent to x_1 in $B(G)$. If $d_{B(G)}(x_1) \geq d_{B(G)}(u)$, let H_1 be the graph obtained from G by deleting the edges w_1w_2 and $x_1x_1^1$, $x_1x_2^1$, $d_c(w_1) - 2$ pendant edges attached at w_1 and $d_c(x_1) - 3$ pendant edges attached at x_1. Then there exists an automorphism σ of H_1 which interchange w_1 and x_1 and preserves all other vertices.

Let $H_2 \cong K_{1, \delta c(v)} - 2$ with center v' and $G_0 = (H_1(v) \circ H_2(v'))(w_1) \circ H_2(v')$. By Lemma 2.4(i), we have $(G_0; w_1, v) = (G_0; v, \sigma(v))$ for any vertex $v \in V(G_0)$. Further, let G_1 be the graph obtained from G_0 by adding edge $x_1x_1^1 + x_1x_2^2$ and $d_c(x_1) - d_c(v_1) - 1$ pendant edges attached at x_1. Then by Lemma 2.4(ii), we have $(G_1; x_1, v) \not\cong (G_1; x_1, \sigma(v))$ for any vertex $v \in V(G_1)$. Obviously, $G = G_1 + w_1v_2$. Let $\tilde{G} = G_1 + w_2x_1$, obviously, $\tilde{G} \in \mathcal{F}_6^{2x} \cup \mathcal{F}_7^{2x}$ and $|E(B(G))| - |E(B(\tilde{G}))| = 1$. By Lemma 2.2, we have $EE(\tilde{G}) > EE(G)$. □

Similar to the proof of Lemma 3.6, we have the following lemmas.

Lemma 3.7. Let $G \in \mathcal{F}_6^{2x} \cup \mathcal{F}_7^{2x}$, $P_u = uv_1v_2$ and $P_u' = uw_1w_2$ be two internal path in $B(G)$, where $d_{B(G)}(u) \geq 3$ ($u \in B(G)$), if $u \neq w_2$, then there exists a graph $\tilde{G} \in \mathcal{F}_6^{2x} \cup \mathcal{F}_7^{2x}$ such that $|E(B(G))| - |E(B(\tilde{G}))| = 1$ and $EE(\tilde{G}) > EE(G)$.

Lemma 3.8. Let G be the graph with $B(G) \cong A_4$ (as shown in Fig. 5), then there is a graph \tilde{G} such that $B(\tilde{G}) \cong A_3$ and $EE(\tilde{G}) > EE(G)$.

Let $P_u(1 \leq i \leq d_{B(G)}(u))$ be the internal path in $B(G)$ with one end vertex u, where $d_{B(G)}(u) \geq 3$ ($u \in B(G)$) and P_u, P_u' ($1 \leq l, k \leq d_{B(G)}(u)$) be two such paths with $|P_u| = s$, $|P_u'| = t$. Note that the complement of the case of $s \geq 1$, $t \geq 3$ is $s \leq 1$, $t \leq 2$. It can be further divided into the three cases:

(i) $s \geq 3$, $t = 2$; (ii) $s \geq 3$, $t = 1$; (iii) $s \leq 2$, $t \leq 2$.

If (i) or (ii) holds, by Lemma 3.6, we can obtain a graph \tilde{G} such that $EE(\tilde{G}) > EE(G)$. In order to find the extremal graph with maximal Estrada index, we only need to consider the case $|P_u| \leq 2 (1 \leq i \leq d_{B(G)}(u))$. Further by Lemmas 3.7 and 3.8, we have the following corollary.

Corollary 3.9. Let G^* be a graph with maximal Estrada index in $\mathcal{F}_6^{2x} \cup \mathcal{F}_7^{2x}$, then $B(G^*) \cong A_i, i \in \{1, 2, 3, 5, 6, 7\}$ (as shown in Fig. 5).
Lemma 3.10. Let G^* be a extremal graph with maximal Estrada index and $B(G) \cong A_i, i \in \{1, 2, 3, 5, 6, 7\}$ (as shown in Fig. 5), then G^* is obtained from A_i by attaching $n - |V(A_i)|$ pendant vertices at a vertex w_4 with maximum degree in $A_i(i \in \{1, 2, 3, 5, 6, 7\})$.

Proof. For the case of $B(G^*) \cong A_1$, let $w_i(i \in \{1, 2, 3, 4, 5\})$ be the vertices of A_1 as shown in Fig. 5. Assume each w_i is attached to m_i pendant edges in G^*, where $m_i \geq 0$ and $\sum_{i=1}^{5} m_i = n - 5$. For convenience, denote $G^* = A_1(m_1, m_2, m_3, m_4, m_5)$.

Case 1. If at least two of m_1, m_2, m_3 are nonzero, say $m_1 > 0, m_2 > 0$, let H_1 be the graph obtained from $A_1(m_1, 0, m_3, m_4, m_5)$ by deleting the pendant vertices of w_1. Then there exists an automorphism which interchanges w_1, w_2 and preserves all other vertices. By Lemma 2.2(ii), we have

$$(A_1(m_1, 0, m_3, m_4, m_5); w_1) \succ (A_1(m_1, 0, m_3, m_4, m_5); w_2).$$

Further by Lemma 2.2,

$$(A_1(m_1, m_2, 0, m_3, m_4, m_5) \succ A_1(m_1, m_2, m_3, m_4, m_5).$$

A contradiction. So at least two of m_1, m_2, m_3 are zero, say $m_2 = m_3 = 0$, then $G^* = A_1(m_1, 0, 0, m_4, m_5)$.

Case 2. If both m_4, m_5 are nonzero, similar to the proof of Case 1, we also can obtain a graph with larger Estrada index, a contradiction. So at least one of m_4, m_5 are zero, say $m_4 = 0$, then $G^* = A_1(m_1, 0, 0, m_5)$.

Case 3. If both m_1, m_5 are nonzero, let H_1 be the graph obtained from A_1 by deleting the edges w_2w_5, w_4w_5. Then there exists an automorphism which interchanges w_1, w_3 and preserves all other vertices. By Lemma 2.4(ii), we have

$$(A_1(0, 0, 0, 0, m_3); w_1) \succ (A_1(0, 0, 0, 0, m_3); w_2).$$

Further by Lemma 2.2,

$$A_1(0, 0, 0, 0, m_1 + m_5) \succ A_1(m_1, 0, 0, 0, m_5),$$

also a contradiction. Then $G^* \cong A_1(0, 0, 0, 0, m_5)$.

Similarly, we can prove the cases for $B(G^*) \cong A_i(i \in \{2, 3, 5, 6, 7\})$. \hfill \Box

Let T_i be the graph obtained from A_i by attaching $n - |V(A_i)|$ pendant vertices at one of the vertex with maximum degree in $A_i(i \in \{1, 2, 3, 5, 6, 7\})$. By Lemma 2.1, we have

$$\phi(T_1; x) = x^{n-4}[x^4 - (n + 2)x^2 - 6x + 3(n - 5)] = x^{n-4}f_1(x);$$
$$\phi(T_2; x) = x^{n-4}[x^4 - (n + 2)x^2 + 4(n - 6)] = x^{n-4}f_2(x);$$
$$\phi(T_3; x) = x^{n-6}[x^4 - (n + 2)x^2 - 6x^3 + 3(n - 4)x^2 + 2x - (n - 5)] = x^{n-6}f_3(x);$$
$$\phi(T_5; x) = x^{n-5}[x^4 - (n + 2)x^2 - 6x^3 + 3(n - 3)x + 2(n - 4)] = x^{n-5}f_5(x);$$
$$\phi(T_6; x) = x^{n-5}[x^5 - (n + 2)x^3 - 4x^2 + 4(n - 4)x + 4] = x^{n-5}f_6(x);$$
$$\phi(T_7; x) = x^{n-6}[x^6 - (n + 2)x^4 + 5(n - 5)x^2 - 2(n - 8)] = x^{n-6}f_7(x).$$

Theorem 3.11. Let G be a graph in \mathcal{F}_n.

(i) If $4 \leq n \leq 9$, $EE(G) \leq EE(T_3)$, the equality holds if and only if $G \cong T_3$.

(ii) If $n \geq 10$, then $EE(G) \leq EE(T_3)$, the equality holds if and only if $G \cong T_3$.

Proof. (i) From Table 1, it is easy to see that the results hold.

(ii) By a direct calculation, we can see that the results hold for a positive integer N_0 larger enough, for example $N_0 = 100$. In the following, let $n \geq N_0$.

Table 1

<table>
<thead>
<tr>
<th>n</th>
<th>$EE(T_1)$</th>
<th>$EE(T_2)$</th>
<th>$EE(T_3)$</th>
<th>$EE(T_5)$</th>
<th>$EE(T_6)$</th>
<th>$EE(T_7)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>29.7862</td>
<td>28.8832</td>
<td>25.8463</td>
<td>22.6983</td>
<td>22.6983</td>
<td>22.6983</td>
</tr>
<tr>
<td>8</td>
<td>33.8545</td>
<td>32.9215</td>
<td>34.0106</td>
<td>29.4116</td>
<td>25.6031</td>
<td>25.6031</td>
</tr>
<tr>
<td>9</td>
<td>38.2718</td>
<td>37.3075</td>
<td>38.3424</td>
<td>32.8822</td>
<td>32.8822</td>
<td>32.8822</td>
</tr>
<tr>
<td>10</td>
<td>43.0674</td>
<td>42.0705</td>
<td>43.0634</td>
<td>37.5031</td>
<td>36.5638</td>
<td>36.5638</td>
</tr>
<tr>
<td>11</td>
<td>48.2724</td>
<td>47.2415</td>
<td>48.1993</td>
<td>42.0849</td>
<td>40.8835</td>
<td>40.8835</td>
</tr>
<tr>
<td>12</td>
<td>53.9201</td>
<td>52.8536</td>
<td>53.7746</td>
<td>47.0642</td>
<td>40.8835</td>
<td>40.8835</td>
</tr>
<tr>
<td>13</td>
<td>60.0455</td>
<td>58.9421</td>
<td>59.8242</td>
<td>52.4737</td>
<td>45.5844</td>
<td>45.5844</td>
</tr>
<tr>
<td>14</td>
<td>66.6862</td>
<td>65.5443</td>
<td>66.3856</td>
<td>58.3479</td>
<td>50.6982</td>
<td>50.6982</td>
</tr>
<tr>
<td>15</td>
<td>73.8811</td>
<td>72.6998</td>
<td>66.3856</td>
<td>64.7237</td>
<td>56.25879</td>
<td>56.25879</td>
</tr>
</tbody>
</table>
Firstly, we have
\[
f_1(\sqrt{n - 1}) = -12 - 6\sqrt{n - 1} < 0,
\]
then \(\lambda_1(T_1) > \sqrt{n - 1}\).

It is easy to calculate that the graph \(T_1 - w_4\) has eigenvalues \(\pm \sqrt{3}, 0\) with multiplicity \(n - 3\). By interlacing property of eigenvalues of \(A(T_1 - w_4)\) and \(A(T_1)\), \(\lambda_i(T_1) \geq \lambda_i(T_1 - w_4)\) for \(i = 2, 3, \ldots, n - 1\) [2]. Then
\[
EE(T_1) = \sum_{i=1}^{n} e^{\lambda_i(T_1)} > e^{\lambda_1(T_1)} + \sum_{i=2}^{n-1} e^{\lambda_i(T_1 - w_4)}
\]
\[
> e^{\sqrt{n-1}} + (n - 3) + e^{\sqrt{3}} + e^{-\sqrt{3}} = H_1.
\]
(a) We know that the solutions of \(f_2(x) = 0\) are \(\pm \sqrt{\frac{n+2+\sqrt{n^2-2n+100}}{2}}, \pm \sqrt{\frac{n+2-\sqrt{n^2-2n+100}}{2}}\) and the graph \(T_2 - w_4\) has eigenvalues \(\pm 2, 0\) with multiplicity \(n - 3\). Then by the fact \(\lambda_i(T_2) \leq \lambda_{i-1}(T_2 - w_4)\) for \(i = 2, 3, \ldots, n\),
\[
EE(T_2) = \sum_{i=1}^{n} e^{\lambda_i(T_2)}
\]
\[
= e^{\lambda_1(T_2)} + \sum_{i=2}^{n} e^{\lambda_i(T_2)} \leq e^{\lambda_1(T_2)} + \sum_{i=1}^{n-1} e^{\lambda_i(T_2 - w_4)}
\]
\[
= e^{\sqrt{\frac{n+2+\sqrt{n^2-2n+100}}{2}}} + (n - 3) + e^{2} + e^{-2} = H_2.
\]
Note that \(e^{\sqrt{n-1}} - e^{\sqrt{\frac{n+2+\sqrt{n^2-2n+100}}{2}}} + e^{\sqrt{3}} - e^{2} > 0\) for \(n \geq 24\), then
\[
H_1 - H_2 = e^{\sqrt{n-1}} - e^{\sqrt{\frac{n+2+\sqrt{n^2-2n+100}}{2}}} + e^{\sqrt{3}} + e^{-\sqrt{3}} - e^{2} - e^{-2}
\]
\[
> e^{\sqrt{n-1}} - e^{\sqrt{\frac{n+2+\sqrt{n^2-2n+100}}{2}}} + e^{\sqrt{3}} - e^{2} > 0.
\]
So \(EE(T_1) > EE(T_2)\).

(b) By a direct calculation, the graph \(T_6 - w_4\) has eigenvalues \(\pm 2, 0\) with multiplicity \(n - 3\). For \(n \geq 101\),
\[
f_6\left(\sqrt{\frac{n - 3}{2}}\right) = \frac{(2n - 43)}{4} \sqrt{\frac{n - 3}{2}} - 4n + 10 > 0 \quad (3.2)
\]
\[
f_6(\sqrt{n - 2}) = -8\sqrt{n - 2} - 4n + 12 < 0 \quad (3.3)
\]
\[
f_6(1) = 3n - 13 > 0 \quad (3.4)
\]
By interlacing property of eigenvalues of \(T_6 - w_4\) and \(T_6, \lambda_2(T_6) \leq \lambda_1(T_6 - w_4) = 2\). Further by \(3.2\)–\(3.4\), we have \(2 < \lambda_1(T_6) < \sqrt{\frac{n - 3}{2}}\). Similarly, by the fact \(\lambda_i(T_6) \leq \lambda_{i-1}(T_6 - w_4)\) for \(i = 2, 3, \ldots, n\),
\[
EE(T_6) = \sum_{i=1}^{n} e^{\lambda_i(T_6)} \leq e^{\lambda_1(T_6)} + \sum_{i=1}^{n-1} e^{\lambda_i(T_6 - w_4)}
\]
\[
< e^{\sqrt{n-1}} + (n - 3) + e^{2} + e^{-2} = H_6.
\]
Note that \(e^{\sqrt{n-1}} - e^{\sqrt{\frac{n-3}{2}}} + e^{\sqrt{3}} - e^{2} > 0\) for \(n \geq 11\), then
\[
H_1 - H_6 = e^{\sqrt{n-1}} - e^{\sqrt{\frac{n-3}{2}}} + e^{\sqrt{3}} + e^{-\sqrt{3}} - e^{2} - e^{-2}
\]
\[
> e^{\sqrt{n-1}} - e^{\sqrt{\frac{n-3}{2}}} + e^{\sqrt{3}} - e^{2}.
\]
So \(EE(T_1) > EE(T_6)\).

Note that for \(n \geq 14\),
\[
f_7\left(\sqrt{\frac{n - 3}{2}}\right) = \left(n - \frac{3}{2}\right) \left(\frac{3}{2} n - \frac{79}{4}\right) - 2n + 16 > 0.
\]
Similar to processes of \(b\), we can prove \(EE(T_1) > EE(T_7)\).
Secondly, we know that $f_1(x) = x^4 - (n + 2)x^2 + 3(n - 5) - 6\sqrt{n - 1} + 6\sqrt{n - 1} - 6x$, then the maximum solution x_1 of $x^4 - (n + 2)x^2 + 3(n - 5) - 6\sqrt{n - 1} = 0$ is

$$\sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}})}.$$

It is easy to see that

$$n^2 - 8n + 64 + 24\sqrt{n - 1} = (n - 4)^2 + 48 + 24\sqrt{n - 1} < (n - 4)^2,$$

$$\sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}})} < \sqrt{n - 1},$$

$$f_1(x_1) = 6\sqrt{n - 1} - 6\sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}})} < 0,$$

then

$$\lambda_1(T_1) > \sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}})}.$$

Further by the continuity of $f_1(x)$, there exists a positive number ϵ_0 such that

$$\lambda_1(T_1) \geq \sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}}) + \epsilon_0}.$$

Then

$$EE(T_1) = \sum_{i=1}^{n} e^{\lambda_i(T_1)} > e^{\lambda_1(T_1)} + \sum_{i=1}^{n-1} e^{\lambda_i(T_1 - w_4)} \geq e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})+\epsilon_0}} + (n-3) + e^{\sqrt{3}} + e^{\sqrt{3}} = H'_1.$$

For $n \geq 12$,

$$f_3(x_1) = 6\sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}}) - 2n - 16 - 4\sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}}} > 0$$

$$f_3(\sqrt{n - 1}) = -(6n - 8)\sqrt{n - 1} - 10n + 14 < 0$$

$$f_3(1) = n - 12 > 0.$$

By a direct calculation, the graph $T_5 - w_4$ has eigenvalues $2, -1$ with multiplicity 2 and 0 with multiplicity $n - 4$. By interlacing property of eigenvalues of $T_5 - w_4$ and T_5, $\lambda_2(T_5) \leq \lambda_1(T_5 - w_4) = 2$. Further by (3.6)–(3.8), we have

$$2 < \lambda_1(T_5) < \sqrt{\frac{1}{2}(n + 2 + \sqrt{n^2 - 8n + 64 + 24\sqrt{n - 1}})}.$$

Similarly, by the fact $\lambda_i(T_5) \leq \lambda_{i-1}(T_5 - w_4)$ for $i = 2, 3, \ldots, n$,

$$EE(T_5) = \sum_{i=1}^{n} e^{\lambda_i(T_5)} \leq e^{\lambda_1(T_5)} + \sum_{i=1}^{n-1} e^{\lambda_i(T_5 - w_4)} < e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})+\epsilon_0}} + (n-4) + e^2 + 2e^{-1} = H_5.$$

For $n \geq N_1(\epsilon_0)$ (where $N_1(\epsilon_0)$ is some positive integer), we have

$$H'_1 - H_5 = e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})+\epsilon_0}} - e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})}} + 1 + e^{\sqrt{3}} + e^{\sqrt{3}} - e^2 - 2e^{-1}$$

$$> e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})+\epsilon_0}} - e^{\sqrt{\frac{1}{2}(n+2+\sqrt{n^2-8n+64+24\sqrt{n-1}})}} + e^{\sqrt{3}} + e^{\sqrt{3}} - e^2 > 0.$$

So $EE(T_1) > EE(T_3)$.

Similarly, we can prove $EE(T_1) > EE(T_3)$. \(\Box\)

Acknowledgments

The authors would like to express their sincere gratitude to the referees for a very careful reading of the paper and for all their insightful comments and valuable suggestions, which led to a number of improvements in this paper.
The project was supported by the Special Fund for Basic Scientific Research of Central Colleges, South-Central University for Nationalities (CZZ13006).

References